Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫(ex log a + ea log x + ea log a )dx
Q. Evaluate :
∫
(
e
x
l
o
g
a
+
e
a
l
o
g
x
+
e
a
l
o
g
a
)
d
x
8913
214
Integrals
Report Error
A
l
o
g
a
a
x
+
a
+
1
x
a
+
1
+
a
a
x
+
c
38%
B
l
o
g
a
a
x
+
a
−
1
x
a
+
1
+
a
x
a
+
c
20%
C
l
o
g
a
a
x
+
a
+
1
x
a
+
1
+
a
x
a
+
c
34%
D
l
o
g
a
a
x
−
a
+
1
x
a
+
1
+
a
a
x
+
c
8%
Solution:
We have,
I
=
∫
(
e
x
l
o
g
a
+
e
a
l
o
g
x
+
e
a
l
o
g
a
)
d
x
Then,
I
=
∫
(
e
l
o
g
a
x
+
e
l
o
g
x
a
+
e
l
o
g
a
a
)
d
x
⇒
I
=
∫
(
a
x
+
x
a
+
a
a
)
d
x
[
∵
e
l
o
g
λ
=
λ
]
⇒
∫
a
x
d
x
+
∫
x
a
d
x
+
∫
a
a
d
x
⇒
I
=
l
o
g
a
a
x
+
a
+
1
x
a
+
1
+
a
a
x
+
C