Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Evaluate : $\int\left(e^{x\,log\,a} + e^{a\,log\,x} + e^{a\,log\,a} \right)dx$

Integrals

Solution:

We have,$ I =\int\left(e^{x\,log\,a}+e^{a\,log\,x} +e^{a\,log\,a}\right) dx $

Then,$ I =\int \left(e^{log\,a^x} +e^{log\,x^a} +e^{log\,a^a}\right)dx$

$\Rightarrow I = \int\left(a^{x} +x^{a} +a^{a}\right)dx \left[\because e^{log\lambda}=\lambda\right]$

$\Rightarrow \int a^{x}dx+\int x^{a}dx + \int a^{a}dx$

$\Rightarrow I =\frac{a^{x}}{loga}+\frac{x^{a+1}}{a+1} + a^{a } x +C$