Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫√[3](sin2 x/cos14 x)dx
Q. Evaluate:
∫
3
co
s
14
x
s
i
n
2
x
d
x
5289
201
Integrals
Report Error
A
−
5
3
t
a
n
3
5
x
−
11
3
t
a
n
−
3
11
+
C
6%
B
5
3
t
a
n
3
5
x
+
11
3
t
a
n
3
11
x
+
C
66%
C
5
3
t
a
n
3
5
x
−
11
3
t
a
n
3
11
x
+
C
20%
D
5
3
t
a
n
5
3
x
+
11
3
t
a
n
3
11
x
+
C
8%
Solution:
Let
I
=
∫
3
co
s
14
x
s
i
n
2
x
d
x
=
∫
s
i
n
3
2
x
co
s
−
3
14
x
d
x
Here, the sum of the exponents of
s
in
x
and
cos
x
is
−
4
, which is a negative even integer. So, we divide and multiply by
co
s
4
x
to get
I
=
∫
s
i
n
3
2
x
co
s
−
3
14
x
co
s
4
x
se
c
4
x
d
x
⇒
I
=
∫
co
s
3
2
x
s
i
n
3
2
x
se
c
4
x
d
x
⇒
I
=
∫
t
a
n
3
2
x
(
1
+
t
a
n
2
x
)
se
c
2
x
d
x
Put
t
an
x
=
t
⇒
se
c
2
x
d
x
=
d
t
I
=
∫
(
t
3
2
+
t
3
8
)
d
t
=
5
3
t
3
5
+
11
3
t
3
11
+
C
=
5
3
t
a
n
3
5
x
+
11
3
t
a
n
3
11
x
+
C