Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫(1/1+3sin2x + 8cos2x)dx
Q. Evaluate:
∫
1
+
3
s
i
n
2
x
+
8
co
s
2
x
1
d
x
8267
188
Integrals
Report Error
A
6
1
t
a
n
−
1
(
2
t
an
x
)
+
C
16%
B
t
a
n
−
1
(
2
t
an
x
)
+
C
10%
C
6
1
t
a
n
−
1
(
3
2
t
an
x
)
+
C
70%
D
None of these
4%
Solution:
I
=
∫
1
+
3
s
i
n
2
x
+
8
co
s
2
x
1
d
x
Dividing the numerator and denominator by
co
s
2
x
, we get
⇒
I
=
∫
se
c
2
x
+
3
t
a
n
2
x
+
8
se
c
2
x
d
x
⇒
I
=
∫
1
+
t
a
n
2
x
+
3
t
a
n
2
x
+
8
se
c
2
x
d
x
=
∫
4
t
a
n
2
x
+
9
se
c
2
x
d
x
putting
t
an
x
=
t
⇒
se
c
2
x
d
x
=
d
t
, we get
I
=
∫
4
t
2
+
9
d
t
=
4
1
∫
t
2
+
(
2
3
)
2
d
t
=
4
1
×
2
3
1
t
a
n
−
1
(
2
3
t
)
+
C
⇒
I
=
6
1
t
a
n
−
1
(
3
2
t
)
+
C
=
6
1
t
a
n
−
1
(
3
2
t
an
x
)
+
C