Equation of the plane passing through three points A, B, C with position vectors a, b, c is (r−a)⋅[(b−a)×(c−a)]=0
We have, (b−a)=(3i^−2j^+4k^)−(−6i^+3j^+2k^) =9i^−5j^+2k^ (c−a)=(5i^+7j^+3k^)−(6j^+3j^+2k^) =11i^+4j^+k^
Now, (b−a)×(c−a)=∣∣i^911j^−54k^21∣∣=−13i^+13j^+91k^ ∴ Equation of plane is [r−(−6i^+3j^+2k^)]⋅[−13i^+13j^+91k^]=0 ⇒r⋅(−13i^+13j^+91k^)−(78+39+182)=0 ⇒r⋅(−13i^+13j^+91k^)=299 ⇒r⋅(i^−j^−7k^)=−23 ⇒r⋅(i^−j^−7k^)+23=0