We have, A=(acosk,asink) B=(bsink,−bcosk) C=(1,0)
Let (x,y) be the centroid of ΔABC. ∴x=3acosk+bsink+1
and y=3asink−bcosk+0 ⇒3x−1=acosk+bsink...(i)
and 3y=asink−bcosk...(ii)
On squaring and then adding Eqs. (i) and (ii) we get (3x−1)2+(3y)2=a2(sin2k+cos2k)+b2(sin2k+cos2k) ∴(3x−1)2+9y2=a2+b2 ∴(1−3x)2+9y2=a2+b2