Let the equation of hyperbola be a2x2−b2y2=1…(i)
Given, e=23 and foci =(±ae,0)=(±2,0)
So, e=23 and ae=2 ⇒a×23=2 ⇒a2=916
Also, b2=a2(e2−1) ⇒b2=916(49−1)=920
On putting the values of a2 and b2 in (i), we get (16/9)x2−(20/9)y2=1 ⇒4x2−5y2=94