Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Equation of the circle cutting orthogonally the three circles x2+y2-2 x+3 y-7=0, x2+y2+5 x-5 y+9=0 and x2+y2+7 x-9 y+29=0 is
Q. Equation of the circle cutting orthogonally the three circles
x
2
+
y
2
−
2
x
+
3
y
−
7
=
0
,
x
2
+
y
2
+
5
x
−
5
y
+
9
=
0
and
x
2
+
y
2
+
7
x
−
9
y
+
29
=
0
is
994
143
Conic Sections
Report Error
A
x
2
+
y
2
−
16
x
−
18
y
−
4
=
0
B
x
2
+
y
2
−
7
x
+
11
y
+
6
=
0
C
x
2
+
y
2
+
2
x
−
8
y
+
9
=
0
D
None of these
Solution:
S
1
−
S
2
=
0
⇒
7
x
−
8
y
+
16
=
0
S
2
−
S
3
=
0
⇒
2
x
−
4
y
+
20
=
0
S
3
−
S
1
=
0
⇒
9
x
−
12
y
+
36
=
0
On solving centre
(
8
,
9
)
Length of tangent
=
S
1
=
64
+
81
−
16
+
27
−
7
=
149
=
(
x
−
8
)
2
+
(
y
−
9
)
2
=
149
=
x
2
+
y
2
−
16
x
−
18
y
−
4
=
0