Given y=9β2x2β
Put y=x, we get x=9β2x2ββx2=9β2x2Β (squaringΒ onΒ bothΒ sides)Β β3x2β9βx2=3 β΄x=Β±3β
So, (x=3β,y=3β) and (x=β3β,y=β3β) (reject)
Now, dxdyβ](3β,3β)β=29β2x2β(β4x)β=9β2x2ββ2xβ=3ββ23ββ=β2
So, equation of tangent is (yβ3β)=β2(xβ3β)β2x+y=33β