∫(x4+3x2+1)tan−1(x+x1)(x2−1)dx+∫x4+3x2+1dx ∫((x+x1)2+1)tan−1(x+x1)(1−x21)dx+21∫x4+3x2+1(x2+1)−(x2−1)dx
Put tan−1(x+x1)−t ∫tdt+21∫(x−x1)2+5(1+x21)dx−21∫(x+x1)2+1(1−x21)dx
Put x−x1=y,x+x1=z loget+21∫y2+5dy−21∫z2+1dz =logetan−1(x+x1)+251tan−1(5xx2−1) −21tan−1(xx2+1)+C α=1,β=251,γ=51,δ=2−1
or α=1,β=25−1,γ=5−1,δ=2−1 10(α+βγ+δ)=10(1+101−21)=6