Q.
Eor real numbers $\alpha, \beta, \gamma$ and $\delta$, if
$\int \frac{\left(x^{2}-1\right)+\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)}{\left(x^{4}+3 x^{2}+1\right) \tan ^{-1}\left(\frac{x^{2}+1}{x}\right)} d x$
$=\alpha \log _{ e }\left(\tan ^{-1}\left(\frac{ x ^{2}+1}{ x }\right)\right)$
$+\beta \tan ^{-1}\left(\frac{\gamma\left( x ^{2}-1\right)}{ x }\right)+\delta \tan ^{-1}\left(\frac{ x ^{2}+1}{ x }\right)+ C$
where $C$ is an arbitrary constant, then the value
of $10(\alpha+\beta \gamma+\delta)$ is equal to
Solution: