Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Domain of the function f(x) if 3x+3f(x)= minimum of φ(t) where φ(t) = minimum of 12 t3-15 t2+36 t-25,2| sin t| ; 2 ≤ t ≤ 4 is
Q. Domain of the function
f
(
x
)
if
3
x
+
3
f
(
x
)
=
minimum of
ϕ
(
t
)
where
ϕ
(
t
)
=
minimum of
{
12
t
3
−
15
t
2
+
36
t
−
25
,
2∣
sin
t
∣
;
2
≤
t
≤
4
}
is
1335
191
Application of Derivatives
Report Error
A
(
−
∞
,
1
)
B
(
−
∞
,
lo
g
3
e
)
C
(
0
,
lo
g
3
2
)
D
(
−
∞
,
lo
g
3
2
)
Solution:
Let
g
(
t
)
=
2
t
3
−
15
t
2
+
36
t
−
25
g
′
(
t
)
=
6
t
2
−
30
t
+
36
=
6
(
t
2
−
5
t
+
6
)
=
6
(
t
−
2
)
(
t
−
3
)
=
0
⇒
t
=
2
,
3
For
2
≤
t
≤
4
g
(
t
)
m
i
n
=
g
(
3
)
=
2
×
27
−
15
×
9
+
36
×
3
−
25
=
2
Also
2
+
∣
sin
t
∣
≥
2
Hence minimum
ϕ
(
t
)
=
2
∴
3
x
+
3
f
(
x
)
=
2
⇒
3
f
(
x
)
=
2
−
3
x
⇒
3
f
(
x
)
>
0
⇒
2
−
3
x
>
0
⇒
3
x
<
2
⇒
x
<
lo
g
3
2
∴
x
∈
(
−
∞
,
lo
g
3
2
)