Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle∑r=0n n C r sin r x cos (n-r) x=
Q.
r
=
0
∑
n
n
C
r
sin
r
x
cos
(
n
−
r
)
x
=
1187
167
Binomial Theorem
Report Error
A
2
n
−
1
sin
(
n
−
1
)
x
B
2
n
sin
n
x
C
2
n
−
1
sin
n
x
D
none of these
Solution:
We have,
r
=
0
∑
n
C
r
sin
r
x
cos
(
n
−
r
)
x
=
2
1
[
(
n
C
0
sin
0
x
cos
n
x
+
n
C
n
sin
n
x
cos
0
x
)
+
(
n
C
1
sin
x
cos
(
n
−
1
)
x
+
n
C
n
−
1
sin
(
n
−
1
)
x
⋅
cos
x
)
+
(
n
C
2
sin
2
x
cos
(
n
−
2
)
x
+
n
C
n
−
2
sin
(
n
−
2
)
x
⋅
cos
2
x
)
+
…
+
(
n
C
n
sin
n
x
cos
0
x
+
n
C
0
sin
0
x
cos
n
x
)
]
=
2
1
[
n
C
0
sin
n
x
+
n
C
1
sin
n
x
+
…
+
n
C
n
sin
n
x
]
=
2
1
[
n
C
0
+
n
C
1
+
…
+
n
C
n
]
sin
n
x
=
2
2
n
s
i
n
n
x
∴
r
=
0
∑
n
C
r
sin
r
x
cos
(
n
−
r
)
x
=
2
n
−
1
sin
n
x
.