We have m=1∑ntan−1(m4+m2+22m) =m=1∑ntan−1(1+(m2+m+1)(m2−m+1)2m) =m=1∑ntan−1(1+(m2+m+1)(m2−m+1)(m2+m+1)−(m2−m+1)) m=1∑n[tan−1(m2+m+1)−tan−1(m2−m+1)] =(tan−13−tan−11)+(tan−17−tan−13)+ (tan−113−tan−17)+……+[tan−1(n2+n+1)−tan−1(n2−n+1)] =tan−1(n2+n+1)−tan−11=tan−1(2+n2+nn2+n).