sin72πk−icos72πk =−i(cos72πk+isin72πk) =−iei72πk k=1∑6(sin72πk−icos72πk)=−k=1∑6ei72πk… (i) ∵Z7−1=0
has roots Z=ei72πk,k=0,1,2,3,4,5,6 ∴k=0∑6ei72πk=0 ⇒[ Sum of roots of unity is 0] ⇒k=1∑6ei72πk=0te6=−172πk =−i(cos72πk+isin72πk) =−iei72πk k=1∑6(sin72πk−icos72πk)=−k=1∑6ei72πk… (i) ∵Z7−1=0
has roots Z=ei72πk,k=0,1,2,3,4,5,6 ∴k=0∑6ei72πk=0[ Sum of roots of unity is 0] ⇒1+k=1∑6ei72πk=0 ⇒tk=1∑6ei72πk=−1 From Eq. (i), k=1∑6(sin72πk−icos72πk)=(−i)(−1)=i