Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limx → (π/4) (tan x)tan 2x equals
Q.
x
→
4
π
lim
(
t
an
x
)
t
an
2
x
equals
3009
165
Limits and Derivatives
Report Error
A
e
1
18%
B
e
2
27%
C
e
−
1
47%
D
e
−
2
8%
Solution:
x
→
4
π
lim
(
t
an
x
)
t
an
2
x
(
1
∞
form)
=
e
x
→
π
/4
lim
(
t
an
x
−
1
)
t
an
2
x
=
e
x
→
π
/4
lim
(
1
−
t
an
x
)
(
1
+
t
an
x
)
(
1
−
t
an
x
)
−
2
t
an
x
=
e
x
→
π
/4
lim
1
+
t
an
x
−
2
t
an
x
=
e
−
1