Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim x arrow (π/2)( tan 2 x((2 sin 2 x+3 sin x+4)(1/2)-( sin 2 x+6 sin x+2)(1/2))) is equal to
Q.
x
→
2
π
lim
(
tan
2
x
(
(
2
sin
2
x
+
3
sin
x
+
4
)
2
1
−
(
sin
2
x
+
6
sin
x
+
2
)
2
1
)
)
is equal to
417
161
JEE Main
JEE Main 2022
Limits and Derivatives
Report Error
A
12
1
35%
B
−
18
1
24%
C
−
12
1
29%
D
−
6
1
12%
Solution:
x
→
2
π
lim
tan
2
x
[
2
sin
2
x
+
3
sin
x
+
4
−
sin
2
x
+
6
sin
x
+
2
]
=
x
→
2
π
lim
9
+
9
tan
2
x
[
sin
2
x
−
3
sin
x
+
2
]
=
x
→
2
π
lim
6
tan
2
x
(
sin
x
−
1
)
(
sin
x
−
2
)
=
6
1
x
→
2
π
lim
tan
2
x
(
1
−
sin
x
)
=
6
1
x
→
2
π
lim
(
1
−
sin
x
)
sin
2
x
(
1
−
sin
x
)
(
1
+
sin
x
)
=
12
1