Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim _{x \rightarrow \frac{\pi}{2}}\left(\tan ^{2} x\left(\left(2 \sin ^{2} x+3 \sin x+4\right)^{\frac{1}{2}}-\left(\sin ^{2} x+6 \sin x+2\right)^{\frac{1}{2}}\right)\right)$ is equal to

JEE MainJEE Main 2022Limits and Derivatives

Solution:

$\displaystyle\lim _{x \rightarrow \frac{\pi}{2}} \tan ^{2} x\left[\sqrt{2 \sin ^{2} x+3 \sin x+4}-\sqrt{\sin ^{2} x+6 \sin x+2}\right]=$
$\displaystyle\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan ^{2} x\left[\sin ^{2} x-3 \sin x+2\right]}{\sqrt{9}+\sqrt{9}}$
$=\displaystyle\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan ^{2} x(\sin x-1)(\sin x-2)}{6}$
$=\frac{1}{6} \displaystyle\lim _{x \rightarrow \frac{\pi}{2}} \tan ^{2} x(1-\sin x)$
$=\frac{1}{6} \displaystyle\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin ^{2} x(1-\sin x)(1+\sin x)}{(1-\sin x)}=\frac{1}{12}$