Case I: n is a positive integer x→∞limexxn=x→∞limexnxn−1 =x→∞limexn(n−1)xn−2=…=x→∞limexn!
(Using L’Hospital’s Rule repeatedly) =0 Case II: n is a negative integer. x→∞limexxn=x→∞limexx−m
(Putting n=−m, where m is a positive integer) =x→∞limxmex1=∞1=0 Case III: n=0 x→∞limexxn=x→∞limex1=∞1=0
Hence, x→∞limexxn=0 for all values of n.