Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim x arrow ∞ (xn/ex)=0,(n integer ), for
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\displaystyle\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0,(n$ integer $)$, for
Limits and Derivatives
A
no value of n
B
all values of n
C
only negative values of n
D
only positive values of n
Solution:
Case I:
$n$ is a positive integer
$\displaystyle\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=\displaystyle\lim _{x \rightarrow \infty} \frac{n x^{n-1}}{e^{x}}$
$=\displaystyle\lim _{x \rightarrow \infty} \frac{n(n-1) x^{n-2}}{e^{x}}=\ldots=\displaystyle\lim _{x \rightarrow \infty} \frac{n !}{e^{x}}$
(Using L’Hospital’s Rule repeatedly)
$=0$
Case II:
$n$ is a negative integer.
$\displaystyle\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=\displaystyle\lim _{x \rightarrow \infty} \frac{x^{-m}}{e^{x}}$
(Putting $n=-m$, where $m$ is a positive integer)
$=\displaystyle\lim _{x \rightarrow \infty} \frac{1}{x^{m} e^{x}}=\frac{1}{\infty}=0$
Case III:
$n=0$
$\displaystyle\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=\displaystyle\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=\frac{1}{\infty}=0$
Hence, $\displaystyle \lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0$ for all values of $n$.