We have, x→−∞lim∣x∣3+7∣x∣+8x5tan(πx21)+3∣x∣2+7 =x→−∞lim−x3−7x+8x5tan(πx21)+3x2+7[∵x<0⇒∣x∣=−x] =x→−∞lim−1−x27+x38x2tan(πx21)+x3+x37
On dividing the numerator and denominator by x3 =x→−∞lim−1−x27+x38π1⋅(πx2)1tan{(πx2)1}+x3+x37 =−1−0+0π1⋅1+0+0=−π1