Consider x→∞lim[exx100+(cosx2)x2] =x→∞limexx100+x→∞lim[cos(x2)]x2 =x→∞limexx100=0
(Using L′ Hopital's rule)
and x→∞lim(cosx2)x2 is of (1∞) form x→∞limx2(cosx2−1) ( Put x2=t⇒x=t2) =ex→∞limt24(cost−1)=e−t→0lim(t21−cost)⋅4 =e−t→0lim(2tsint)4=e−2