Consider x→∞lim[exx100+(cosx2)x2] =x→∞limexx100+x→∞lim[(cosx2)]x2 =x→∞limexx100=0 (Using L' Hopital’s rule)
and x→∞lim(cosx2)x2 is of (1∞) form =ex→∞limx2(cosx2−1) =et→0limt24(cost−1) (Put x2=t⇒x=t2) =e−t→0lim(t21−cost)4=e−t→0lim(2tsint)4=e−2