Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limx → 0 (sin x4 - x4 cos x4 + x20/x4(e2x4 1-2x4)) is equal to
Q.
x
→
0
lim
x
4
(
e
2
x
4
1
−
2
x
4
)
s
in
x
4
−
x
4
cos
x
4
+
x
20
is equal to
7488
208
Limits and Derivatives
Report Error
A
0
10%
B
- 1/6
28%
C
1/6
39%
D
does not exist
22%
Solution:
x
→
0
lim
x
4
(
e
2
x
4
1
−
2
x
4
)
s
in
x
4
−
x
4
cos
x
4
+
x
20
=
t
→
0
lim
t
(
e
2
t
−
1
−
2
t
)
s
in
t
−
t
cos
t
+
t
5
=
t
→
0
lim
t
(
1
+
2
t
+
2
!
4
t
2
+
3
!
8
t
3
+
4
!
16
t
4
+
....
−
1
−
2
t
)
t
−
3
!
t
3
+
5
!
t
5
.....
−
t
(
1
−
2
!
t
2
+
4
!
t
4
..........
)
+
t
5
=
t
→
0
lim
2
t
3
+
3
!
8
t
4
+
.......
−
6
t
3
+
2
t
3
+
5
!
t
5
−
4
!
t
5
+
.....
+
t
5
=
2
−
6
1
+
2
1
=
−
12
−
1
+
3
=
6
1