Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limx → 0[(sin[x-3]/[x-3])], where [ . ] denotes greatest integer function is
Q.
x
→
0
lim
[
[
x
−
3
]
s
in
[
x
−
3
]
]
, where [ . ] denotes greatest integer function is
5414
208
Limits and Derivatives
Report Error
A
0
8%
B
1
26%
C
does not exist
54%
D
sin 1
12%
Solution:
x
→
0
lim
[
[
x
−
3
]
s
in
[
x
−
3
]
]
For
x
→
0
+
,
[
x
−
3
]
=
−
3
∴
[
x
−
3
]
s
in
[
x
−
3
]
=
−
3
s
in
(
−
3
)
=
−
3
s
in
3
∈
(
0
,
1
)
∴
x
→
0
+
lim
[
x
−
3
]
s
in
[
x
−
3
]
=
0
For
x
→
0
−
,
[
x
−
3
]
=
−
4
∴
[
x
−
3
]
s
in
[
x
−
3
]
=
4
s
in
4
lies in
(
−
1
,
0
)
∴
x
→
0
−
lim
[
x
−
3
]
s
in
[
x
−
3
]
=
−
1
∴
Limit does not exist.