Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim x arrow 0+ log tan x( tan 2 x) is equal to
Q.
x
→
0
+
lim
lo
g
t
a
n
x
(
tan
2
x
)
is equal to
1395
237
Limits and Derivatives
Report Error
A
1
31%
B
-1
11%
C
0
28%
D
None of these
30%
Solution:
x
→
0
+
lim
lo
g
t
a
n
x
(
tan
2
x
)
=
x
→
0
+
lim
lo
g
(
tan
x
)
lo
g
(
tan
2
x
)
(
∞
∞
form
)
=
x
→
0
+
lim
t
a
n
x
1
(
sec
2
x
)
t
a
n
2
x
1
(
2
sec
2
2
x
)
[Using L' Hospital's rule]
=
x
→
0
+
lim
sin
2
x
cos
2
x
2
sin
x
cos
x
=
x
→
0
+
lim
sin
4
x
2
sin
2
x
(
0
0
form
)
=
x
→
0
+
lim
4
cos
4
x
4
cos
2
x
=
1.
[Using L' Hospital's rule]