We have x→0lim−2sin2(cx/2)−2sin(2(a+b)x)sin(2(a−b)x) =x→0limx2sin(2(a+b)x)⋅sin(2(a−b)x)⋅sin22cxx2 =x→0lim2(a+b)x⋅(a+b2)sin2(a+b)x⋅2(a−b)x⋅a−b2sin2(a−b)x⋅sin22cx(2cx)2×c24 =[(2a+b)(2a−b)(c24)x→0lim{2(a+b)xsin2(a+b)x}× x→0lim{(2a−b)xsin2(a−b)x}x→0lim{sin2cx2cx}2] =(2a+b×2a−b×c24) =c2a2−b2