x→0limtan22x1+xsinx−cosx(00 form )
On rationalising =x→0limtan22x1+xsinx−cosx×1+xsinx+cosx1+xsinx+cosx =x→0limtan22x1+xsinx−cosx×x→0lim1+xsinx+cosx1 =x→0limtan22x(1−cosx)+xsinx×21 =x→0limtan22x2sin22x+2xsin2xcos2x×21 =x→0limtan22x2sin22x[1+tan2xx]×21 =x→0lim4[2xtan2x]241⋅(2xsin2x)2[1+tan2x2⋅2x]
On applying limits, we get =4(1)241×(1)2×[1+2×1]=163