We know that, x−1<[x]≤x ⇒x+2x+...+nx−n<r=1∑n[rx]≤x+2x+...+nx ⇒2x⋅n(n+1)−n<r=1∑n[rx]≤2x⋅n(n+1) ⇒2x(1+n1)−n1<n21r=1∑n[rx]≤2x(1+n1)
Now, n→∞lim2x(1+n1)=2x
and n→∞lim2x(1+n1)−n1=2x
Using Sandwich theorem, we find that n→∞limn2[x]+[2x]+...+[nx]=2x