Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim n arrow ∞( tan θ+(1/2) tan (θ/2)+(1/22) tan (θ/22)+ ldots+(1/2n) tan (θ/2n))=
Q.
n
→
∞
lim
(
tan
θ
+
2
1
tan
2
θ
+
2
2
1
tan
2
2
θ
+
…
+
2
n
1
tan
2
n
θ
)
=
1462
209
Limits and Derivatives
Report Error
A
θ
1
B
θ
1
−
2
cot
2
θ
C
2
cot
2
θ
D
None of these
Solution:
tan
2
θ
=
c
o
s
2
θ
s
i
n
2
θ
c
o
t
2
θ
1
=
c
o
s
2
θ
−
s
i
n
2
θ
2
s
i
n
θ
c
o
s
θ
cot
2
θ
=
2
s
i
n
θ
c
o
s
θ
c
o
s
2
θ
−
s
i
n
2
θ
⇒
2
cot
2
θ
=
s
i
n
θ
c
o
s
θ
c
o
s
2
θ
−
s
i
n
θ
c
o
s
θ
s
i
n
2
θ
⇒
2
cot
2
θ
=
cot
θ
−
tan
θ
⇒
tan
θ
=
cot
θ
−
2
cot
2
θ
Now,
tan
θ
=
cot
θ
−
2
cot
2
θ
⇒
2
1
tan
2
θ
=
2
1
cot
2
θ
−
cot
θ
⇒
2
2
1
tan
2
2
θ
=
2
2
1
cot
2
θ
−
2
1
cot
θ
⇒
2
n
1
tan
2
n
θ
=
2
n
1
cot
2
n
θ
−
2
n
−
1
1
cot
2
n
−
1
θ
⇒
S
=
−
2
cot
2
θ
+
2
n
1
cot
2
n
θ
Therefore,
n
→
∞
lim
(
tan
θ
+
2
1
tan
2
θ
+
2
2
1
tan
2
2
θ
+
…
+
2
n
1
tan
2
n
θ
)
=
n
→
∞
lim
S
=
n
→
∞
lim
(
−
2
cot
2
θ
+
2
n
1
cot
2
n
θ
)
=
−
2
cot
2
θ
+
n
→
∞
lim
θ
1
(
tan
2
n
θ
2
n
θ
)
=
−
2
cot
2
θ
+
θ
1