Since, r4+r2+1=(r2−r+1)(r2+r+1)
So, tan−1(1+(r4+r2+1)2r) =tan−1(r2+r+1)−tan−1(r2−r+1)
So, r=1∑ntan−1(r4+r2+22r) =r=1∑n{tan−1(r2+r+1)−tan−1(r2−r+1)} =tan−1(n2+n+1)−tan−1(1) =tan−11+n2+n+1n2+n=tan−1n2+n+2n2+n
So, n→∞limr=1∑ntan−1(r4+r2+22r) =n→∞limtan−1(n2+n+2n2+n)=4π.