Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim n arrow ∞( sin (π/2 n) ⋅ sin (2 π/2 n) ⋅ sin (3 π/2 n) ldots ldots . ⋅ sin ((n-1) π/n))1 / n is equal to :
Q.
n
→
∞
lim
(
sin
2
n
π
⋅
sin
2
n
2
π
⋅
sin
2
n
3
π
……
.
⋅
sin
n
(
n
−
1
)
π
)
1/
n
is equal to :
293
169
Integrals
Report Error
A
2
1
B
3
1
C
4
1
D
5
1
Solution:
A
=
[
n
→
∞
lim
(
sin
2
n
π
sin
2
n
2
π
……
sin
2
n
(
n
−
1
)
)
]
1/
n
⇒
ln
A
=
n
1
r
=
1
∑
2
(
n
−
1
)
ln
sin
2
n
r
π
=
0
∫
2
ℓ
n
sin
(
2
π
x
)
d
x
put
2
π
x
=
t
⇒
ln
A
=
π
2
0
∫
π
ln
(
sin
t
)
d
t
=
π
4
0
∫
π
/2
ln
(
sin
t
)
d
t
⇒
ln
A
=
−
2
ln
2
⇒
A
=
4
1