Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limn → ∞[(1/2n+1)+(1/2n+2)+.....+(1/2n+n)]=
Q.
n
→
∞
lim
[
2
n
+
1
1
+
2
n
+
2
1
+
.....
+
2
n
+
n
1
]
=
3196
245
Integrals
Report Error
A
l
o
g
e
=
3
1
20%
B
l
o
g
e
=
3
2
20%
C
l
o
g
e
=
2
3
44%
D
l
o
g
e
=
3
4
16%
Solution:
n
→
∞
lim
[
2
n
+
1
1
+
2
n
+
2
1
+
.....
+
2
n
+
n
1
]
=
n
→
∞
lim
[
2
+
n
1
1
+
2
+
n
2
1
+
...
+
2
+
n
n
1
]
=
n
→
∞
lim
n
1
n
=
1
∑
n
2
+
n
2
1
=
0
∫
1
2
+
x
d
x
=
[
l
o
g
(
2
+
x
)
]
0
1
]
=
l
o
g
3
−
l
o
g
2
=
l
o
g
2
3