Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limn →∞ (1/1-n2) + (2/1-n2) + .... + (n/1-n2) is equal to
Q.
n
→
∞
lim
{
1
−
n
2
1
+
1
−
n
2
2
+
....
+
1
−
n
2
n
}
is equal to
5547
207
IIT JEE
IIT JEE 1984
Limits and Derivatives
Report Error
A
0
17%
B
−
2
1
38%
C
2
1
29%
D
none of these
17%
Solution:
n
→
∞
lim
(
1
−
n
2
1
+
1
−
n
2
2
+
....
+
1
−
n
2
n
)
=
n
→
∞
lim
1
−
n
2
1
+
2
+
3
+
....
+
n
=
n
→
∞
lim
1
−
n
2
∑
n
=
n
→
∞
lim
2
(
1
−
n
2
)
n
(
n
+
1
)
=
n
→
∞
lim
2
[
n
2
1
−
1
]
1
+
1/
n
=
−
1/2