Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limn→ ∞ [(1+(1/n2))(1+(22/n2))....(1+(nn/n2))]1/n=
Q.
n
→
∞
lim
[
(
1
+
n
2
1
)
(
1
+
n
2
2
2
)
....
(
1
+
n
2
n
n
)
]
1/
n
=
7979
211
Integrals
Report Error
A
e
2
π
−
4
25%
B
2
e
2
π
−
4
38%
C
2
e
2
π
−
4
25%
D
none of these.
12%
Solution:
Let
l
=
n
→
∞
lim
[
(
1
+
n
2
1
)
(
1
+
n
2
2
2
)
+
……
+
(
1
+
n
2
n
2
)
]
1/
n
l
o
g
l
=
n
→
∞
lim
l
/
n
[
l
o
g
(
1
+
n
2
1
)
+
l
o
g
(
1
+
n
2
2
2
)
+
…
+
l
o
g
(
1
+
n
2
n
2
)
]
∴
=
h
→
0
lim
∑
h
⋅
l
o
g
(
1
+
r
h
)
2
)
=
0
∫
1
l
o
g
(
1
+
x
2
)
d
x
=
∣
∣
l
o
g
(
1
+
x
2
)
⋅
x
∣
∣
0
1
−
0
∫
1
1
+
x
2
1
⋅
2
x
⋅
x
d
x
=
l
o
g
2
−
2
0
∫
1
1
+
x
2
x
2
d
x
=
l
o
g
2
−
2
0
∫
1
(
1
−
1
+
x
2
1
)
d
x
=
l
o
g
2
−
2
[
x
t
a
n
−
1
x
]
0
1
=
l
o
g
2
−
2
[
1
−
4
π
]
=
l
o
g
2
+
2
π
−
4
⇒
l
o
g
2
l
=
2
π
−
4
∴
l
=
2
e
2
π
−
4