Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limk → ∞ ((13+23+33+...+k3/k4)) is equal to
Q.
k
→
∞
lim
(
k
4
1
3
+
2
3
+
3
3
+
...
+
k
3
)
is equal to
2556
202
KEAM
KEAM 2011
Limits and Derivatives
Report Error
A
0
B
2
C
3
1
D
∞
E
4
1
Solution:
k
→
∞
lim
(
k
4
1
3
+
2
3
+
3
3
+
…
+
k
3
)
=
k
→
∞
lim
(
4
k
2
(
k
+
1
)
2
×
k
4
1
)
{
∵
1
3
+
2
3
+
…
+
k
3
=
[
2
k
(
k
+
1
)
]
2
}
=
k
→
∞
lim
(
4
k
4
(
1
+
1/
k
)
2
×
k
4
1
)
=
4
(
1
+
0
)
2
=
4
1