Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle ∫ (sin8 textx - cos8 textx/1 - 2 sin2 textx cos2 textx) textdx is equal to (where C is an arbitrary constant)
Q.
∫
1
−
2
s
i
n
2
x
co
s
2
x
s
i
n
8
x
−
co
s
8
x
dx
is equal to (where
C
is an arbitrary constant)
1787
224
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
2
1
s
in
2
x
+
C
B
−
2
1
s
in
2
x
+
C
C
−
2
1
s
in
x
+
C
D
−
s
i
n
2
x
+
C
Solution:
∫
1
−
2sin
2
xcos
2
x
sin
8
x
−
cos
8
x
dx
=
∫
1
−
(
2sin
)
2
(
xcos
)
2
x
(
(
sin
)
4
x
−
(
cos
)
4
x
)
(
(
sin
)
4
(
x + cos
)
4
x
)
dx
=
∫
1
−
(
2 sin
)
2
(
xcos
)
2
x
(
(
sin
)
2
x
−
(
cos
)
2
x
)
(
(
sin
)
4
(
x + cos
)
4
x
)
dx
=
∫
−
cos2x dx
=
−
2
1
sin2x + C