Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \int \frac{sin^{8} \text{x} - cos^{8} \text{x}}{1 - 2 sin^{2} \text{x} cos^{2} \text{x}} \text{dx}$ is equal to (where $C$ is an arbitrary constant)

NTA AbhyasNTA Abhyas 2020Integrals

Solution:

$\displaystyle \int \frac{\text{sin}^{8} \text{x} - \text{cos}^{8} \text{x}}{1 - \text{2sin}^{2} \text{xcos}^{2} \text{x}}\text{dx}$
$=\displaystyle \int \frac{\left(\left(\text{sin}\right)^{4} \text{x} - \left(\text{cos}\right)^{4} \text{x}\right) \left(\left(\text{sin}\right)^{4} \left(\text{x + cos}\right)^{4} \text{x}\right)}{1 - \left(\text{2sin}\right)^{2} \left(\text{xcos}\right)^{2} \text{x}}\text{dx}$
$=\displaystyle \int \frac{\left(\left(\text{sin}\right)^{2} \text{x} - \left(\text{cos}\right)^{2} \text{x}\right) \left(\left(\text{sin}\right)^{4} \left(\text{x + cos}\right)^{4} \text{x}\right)}{1 - \left(\text{2 sin}\right)^{2} \left(\text{xcos}\right)^{2} \text{x}}\text{dx}$
$=\displaystyle \int -\text{cos2x dx}=-\frac{1}{2}\text{sin2x + C}$