∫logxdx=xlogx−x
[By Using integration by parts] logxis−ve.forx,<1 and +ve for x>1.
Also log10x=log10logx ∴ given integral =log101[1/2∫1−logxdx+1∫2logxdx] =−log101[xlogx−x]1/21+log101[xlogx−x]12 =−log101[−1−21log21+21]+log101[2log2−2+1] =log101[21−21log2]+log102log2−1 =2log104log2−2+1−log2=2log103log2−1 =21log10log8−loge=21log10log(e8) =21log10(e8)