Let P = ({x(m−nl+m)})n−l1({x(n−lm+n)})l−m1({x(l−mn+l)})m−n1
As (ab)c=abc , we get, P={x((m−n)(n−l)(l+m))}{x((n−l)(l−m)(m+n))}{x((l−m)(m−n)(n+l))}
As (ab)(ac)=ab+c , we get, P=x{(m−n)(n−l)(l+m)+(n−l)(l−m)(m+n)+(l−m)(m−n)(n+l)}
Solving the exponent of x we get, (m−n)(n−l)(l+m)+(n−l)(l−m)(m+n)+(l−m)(m−n)(n+l) =(m−n)(n−l)(l−m)(l+m)(l−m)+(m+n)(m−n)+(n+l)(n−l) =(m−n)(n−l)(l−m)(l2−m2)+(m2−n2)+(n2−l2) =0
Hence, P=x0 . P=1 dxdP=dxd(1) P′(x)=0
Hence, the differential coefficient of P is 0 .