Given, dxdy=sin(10x+6y)
Let 10x+6y=t....(i) 10+6dxdy=(dxdt) ⇒dxdy=61(dxdt−10)
Now, the given differential equation becomes sint=61(dxdt−10) ⇒6sint=dxdt−10 ⇒dxdt=6sint+10 ⇒6sint+10dt=dx
On integrating both sides, we get 21∫3sint+5dt=x+c....(ii)
Let I1=∫3sint+5dt=∫3(1+tan2t/22tant/2)+5dt =∫(6tan2t+5+5tan22t)(1+tan2t/2)dt
Put tant/2=u ⇒21sec2t/2dt=du⇒dt=sec2t/22du ⇒dt=1+tan2t/22du⇒dt=1+u22du ∴I1=∫(1+u2)(5u2+6u+5)2(1+u2)du=52∫u2+56u+1du =52∫u2+56u+259−259+1du =52∫(u+53)2+(54)2du=52⋅45tan−1(4/5u+3/5) =21tan−1[45u+3]=21tan−1[45tant/2+3]
On putting this in Eq. (ii), we get 41tan−1[45tan2t+3]=x+c ⇒tan−1[45tan2t+3]=4x+4c ⇒41[5tan(5x+3y)+3]=tan(4x+4c) ⇒5tan(5x+3y)+3=4tan(4x+4c)
When x=0,y=0, we get 5tan0+3=4tan(4c) ⇒43=tan4c⇒4c=tan−143
Then, 5tan(5x+3y)+3=4tan(4x+tan−143) ⇒tan(5x+3y)=54tan(4x+tan43)−53 ⇒5x+3y=tan−1[54{tan(4x+tan−143)}−53] ⇒3y=tan−1[54{tan(4x+tan−143)}−53]−5x ⇒y=31tan−1[54{tan(4x+tan−143)}−53]−35x