Q.
Derivative of the function f(x)=log5(log7x), x>7 is
2721
196
Continuity and Differentiability
Report Error
Solution:
<br/>xlog(5)log(7)log7(x)1<br/>
Explanation for the correct option:
Step-1: Simplify the given data. <br/>f(x)=log5(log7(x)),x>7<br/> <br/>⇒f(x)=loge(5)loge(log7(x))(∵logb(a)=loge(b)loge(a))<br/>
Step-2: Differentiate with respect to x ⇒f′(x)=log(5)1×dxd(loge(log7(x))) ⇒f′(x)=log(5)1×log7(x)1×dxd(log7(x)) ⇒f′(x)=log(5)1×log7(x)1×dxd(log(7)log(x)) ⇒f′(x)=log(5)1×log7(x)1×log(7)1×x1 ⇒f′(x)=xlog(5)log(7)log7(x)1