Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Derivative of the function f(x) = log5(log7x), x > 7 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Derivative of the function $f(x) = log_5(log_7x)$, $x > 7$ is
Continuity and Differentiability
A
$\frac{1}{x\left(log\,5\right)\left(log\,7\right)\left(log_{7}\,x\right)}$
37%
B
$\frac{1}{x\left(log\,5\right)\left(log\,7\right)}$
34%
C
$\frac{1}{x\left(log\,x\right)}$
17%
D
None of these
12%
Solution:
$
\frac{1}{x \log (5) \log (7) \log _7(x)}
$
Explanation for the correct option:
Step-1: Simplify the given data.
$
f(x)=\log _5\left(\log _7(x)\right), x>7
$
$
\Rightarrow f(x)=\frac{\log _e\left(\log _7(x)\right)}{\log _e(5)}\left(\because \log _b(a)=\frac{\log _e\left({ }^a\right)}{\log _e(b)}\right)
$
Step-2: Differentiate with respect to $x$
$\Rightarrow f^{\prime}(x)=\frac{1}{\log (5)} \times \frac{ d }{ d x}\left(\log _e\left(\log _7(x)\right)\right)$
$\Rightarrow f \prime(x)=\frac{1}{\log (5)} \times \frac{1}{\log _7(x)} \times \frac{ d }{ d x}\left(\log _7(x)\right)$
$\Rightarrow f \prime(x)=\frac{1}{\log (5)} \times \frac{1}{\log _7(x)} \times \frac{ d }{ d x}\left(\frac{\log (x)}{\log (7)}\right)$
$\Rightarrow f \prime(x)=\frac{1}{\log (5)} \times \frac{1}{\log _7(x)} \times \frac{1}{\log (7)} \times \frac{1}{x}$
$\Rightarrow f^{\prime}(x)=\frac{1}{x \log (5) \log (7) \log _7(x)}$