Equation of line BC is 2x=8y+11=−3z−4=λ (say)
Thus, coordinates of any point on the line BC are (2λ,8λ−11,−3λ+4) ∴ Coordinates of D are of form (2λ,8λ−11,−3λ+4)
Now, DR's of BC are 2,8,−3
and DR's of AD are 2λ−1,8λ−19,−3λ ∵AD⊥BC ∴2(2λ−1)+8(8λ−19)+(−3)(−3λ)=0 ⇒4λ−2+64λ−152+9λ=0 ⇒77λ=154 ⇒λ=2
Hence, the coordinates of D are (4,5,−2).