Δ=a1∣∣a3+axa2ba2cabb2+xbcacbcc2+x∣∣
Applying C1→C1+bC2+cC3 and taking a2+b2+c2+x common, Δ=a1(a2+b2+c2+x)∣∣abcabb2+xbcacbcc2+x∣∣
Applying C2→C2−bC1 and C3→C3−cC1 we get Δ=a1(a2+b2+c2+x)∣∣abc0x000x∣∣ =a1(a2+b2+c2+x)(ax2)=x2(a2+b2+c2+x)
Thus, Δ is divisible by x and x2.