Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Define ak=(k2 + 1)k! and bk=a1+a2+a3+. ldots ldots ...+ak. Let (a100/b100)=(m/n) where m and n are relatively prime numbers. Then the value of (n - m) is:
Q. Define
a
k
=
(
k
2
+
1
)
k
!
and
b
k
=
a
1
+
a
2
+
a
3
+
.
……
...
+
a
k
.
Let
b
100
a
100
=
n
m
where
m
and
n
are relatively prime numbers. Then the value of
(
n
−
m
)
is:
418
164
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
99
Solution:
a
k
=
(
k
2
+
1
)
k
!
=
(
k
(
k
+
1
)
−
(
k
−
1
))
k
!
=
k
(
k
+
1
)!
−
(
k
−
1
)
k
!
a
1
=
1
⋅
2
!
−
0
a
2
=
2
⋅
3
!
−
1
⋅
2
!
a
3
=
3
⋅
4
!
−
2
⋅
3
!
⋮
He
n
ce
b
k
=
k
(
k
+
1
)
!
a
k
=
k
(
k
+
1
)
!
−
(
k
−
1
)
k
!
∴
b
k
a
k
=
k
(
k
+
1
)
!
(
k
2
+
1
)
k
!
=
k
(
k
+
1
)
(
k
2
+
1
)
=
k
2
+
k
k
2
+
1
b
100
a
100
=
10100
10001
=
n
m
;
(
n
−
m
)
=
99
A
n
s
.