Q. Define $a_{k}=\left(k^{2} + 1\right)k!$ and $b_{k}=a_{1}+a_{2}+a_{3}+.\ldots \ldots ...+a_{k}.$ Let $\frac{a_{100}}{b_{100}}=\frac{m}{n}$ where $m$ and $n$ are relatively prime numbers. Then the value of $\left(n - m\right)$ is:
NTA AbhyasNTA Abhyas 2022
Solution: