We have, f(x)=x−[x]x−∣x∣ ∴x−∣x∣≥0 and x−[x]>0 ⇒x>∣x∣ and x>[x] ∴x∈R+−{all integers }
Again, g(x)=4+x22x
Let, y=4+x22x ⇒4y+x2y=2x ⇒yx2−2x+4y=0 ⇒x=2y2±4−16y2 ∴4−16y2≥0 and y=0 ⇒1−4y2≥0 and y=0 ⇒y∈[−21,21]−{0} ∴ Range of g(x)=[−21,21] ∴D=R+−{all integers } and C=[−21,21] ∴D∩C=(0,21]