In CsCl,Cl−lies at corners of simple cube and Cs+at the body centre. Hence, along the body diagonal, Cs+and Cl−touch each other so rCs++rCl−=2r
Calculation of r In ΔEDF,
Body centred cubic unit cell FD=b=a2+a2=2a
In △AFD, c2=a2+b2=a2+(2a)2=a2+2a2 c2=3a2 c=3a
As △AFD is an equilateral triangle. ∴3a=4r [∵C=3r+r+r] ⇒r=43a
Hence, rCs+rCl−=2r=2×43a=23a