Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider two G.Ps. 2,22, 23, ldots and 4,42, 43, ldots of 60 and n terms respectively. If the geometric mean of all the 60+ n terms is (2)(225/8), then displaystyle∑ k =1 n k ( n - k ) is equal to :
Q. Consider two G.Ps.
2
,
2
2
,
2
3
,
…
and
4
,
4
2
,
4
3
,
…
of 60 and
n
terms respectively. If the geometric mean of all the
60
+
n
terms is
(
2
)
8
225
, then
k
=
1
∑
n
k
(
n
−
k
)
is equal to :
1312
147
JEE Main
JEE Main 2022
Sequences and Series
Report Error
A
560
B
1540
C
1330
D
2600
Solution:
(
(
2
1
2
2
…
.
2
60
)
(
4
1
⋅
4
2
……
4
n
)
)
60
+
n
1
=
2
8
225
(
2
30
×
61
4
2
n
(
n
+
1
)
)
60
+
n
1
=
2
8
225
2
1830
+
n
2
+
n
=
2
8
(
225
)
(
60
+
n
)
=
8
n
2
−
217
n
+
1140
=
0
n
=
20
,
8
57
k
=
1
∑
n
nk
−
k
2
=
2
n
2
(
n
+
1
)
−
6
n
(
n
+
1
)
(
2
n
+
1
)
=
1330